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ABSTRACT

A WKB approximation is used to calculate cross sections
for the 180° scattering of scalar and vector waves by a class
of spherically symmetric, repulsive potentials. These
potentials are such that the corresponding index of refraction
has a unique zero. The scalar problem is discussed in the
framevwork of quantum mechanics, and the result is just the
classical cross section. Electromagnetic backscatter from
& dielectric is found to be three-quarters of the scalar
approximation in the extreme geometrical-optics limit.
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I. INTRODUCTION

Interest in radar cross sections has encouraged investigations on the
backscatter of waves from inhomogeneous media. In general, this is a diffi-
cult problem to amalyze, Exact solutions are rare, and the Born upproximtionl
is worthless vhen the index of refraction differs significantly from unity.
The Schiff q;pro:d.m.i’.:l.m2 is expected to have a wider range of validity,
buts its usefulness hinges on the evaluation of a difficult volume integral.
In this paper, we consider the simplest spherically symmetric systems to
vhich a "semi-classical” approximation is applicable. Specifically, the
index of refraction of such a system is a continmuous function of r, and it

has & unique zero at Ty

The scalar-wave problem is studied by investigating the equivalent
problem of electron backscatter from repulsive potentials. The correspondence
principle is derived for 18¢0° scattering; that is, a WKB scattering amplitude
is obtained vhich gives the correct classical cross section. The classical
result is shown to have an upper limit of 4 r 2. In addition, the inverse
square=lav potential is examined in some detail, for the phase shifts are
known exactly, and corrections to the classical result can be derived.

It is known3’ b that the problem of electromagnetic scattering from a

spherically symmetric dielectric is reducible to the solution of two scalar
problems; that is, two radial differential equations must be solved for two
sets of phase shifts. For our purpose, the amplitude for vector backscatter
is proportional to the difference of the corresponding scalar amplitudes.
While difficulties arise because of the gero in the index ~f refraction,
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these scalar amplitudes can be replaced by WKB approximations analogous to the
one introduced earlier. This approximetion is valid in the extreme geo-
metrical optics limit. Here expressions simplify, with the differential cross
section for electrommgnetic backscatter reducing to three-quarters of the
result predicted on the basis of the scalar wave equation.
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II. THE SCALAR FROBLEM

The time-independent scalar wave equation is

(v2 + 32 2(r)] Wig =0,
vhere n(r) is the (spherically symmetric) index of refraction of the medium,

and Zx/k is the wvavelength of the incident wave, The asymptotic scattering

solution of Eq. (2.1) is

ikr
V() 7= oL L8 — 1£(0) ,
k| = x :

where ¢ is the scattering angle. The differential cross section is related
to the angular amplitude f by

G(0) = |t (@)% .

We vant to evaluate ( (x) by geometrical optics. To be more specific, we
rvewrite Bq. (2.1) in the form

[v2 . i -ue)] W) =0 .

This is the Schrddinger equation provided that

k-E-;-:,

u(r) 'f‘f v(r) .

(2.1)

(2.2)

(2.3)

(2.4)

(2.58)

(2.5v)



6110-T837-RU~000

Equations (2.4) and (2.5) represent the scattering of non-relativistic particles
of mass m and energy E by a potential V(r). Now the protlem is to demonstrate
the correspondence principle for backscattering; that is, to let ﬁ—»o in such
a vay as to obtain the ( (x) of classical mechanics.

The scattering amplitude is given by the relation

®

£(0) = (211:)‘l (28 +1) [exp(?.igl) - 1] Pl(cos Q) . (2.6)
!

=0

The & | &re the phase shifts which each of the elementary partial weves of
angular momentum { has experienced because of the potential V(r). The PQ
are Legendre polynomials. The WKB or semi-classical lpproximtions for
scattering is defined by the following steps:

(1). The approximation of ‘SL by the WKB phase chift

' R 2
by=ten { [ o (12 - o) - BB s (e dy w2 (2.7)
Ro>® rl r
- ury) - (Ls 3P f a0 . | (2.8)

(2). The replacement of the sum in Eq. (2.6) by an integrel over {.
(3). The replacement of PQ(cos @) by a smooth function of { .
The approximation in step (1) is applicable to potentials vhich vary slowly
in a wavelength. The result of Aifferentiating Eq. (2.7) with respect to

L 18

N S
-;12‘-9(1.)-:‘-2[@ L , (2.9)
r
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LeB(L+d) .

O(L) is the classical scattering sngle6 for energy E and angular momemtum L.

The correspondence principle appears to have been danomtrated7 only
vhen l sin Qzl. Ve are interested in the case L sin 0> 0. Using the
above WKB prescription, we replace Pl by

B, (cos 0) = exp(-txh) 3,[(Q% + ¥ (x - 9],

s result which is exact vhen O = x and . is an integer. The error in re-
placing the sum by an integrel can be dstermined in principle from the Buler

8
K-EO sﬂ-fdle(ﬂ) s

summtion formla
of which the following form is most useful:

» L- 2.
K“i(a‘,+¢(,‘,)+g1 -(;ﬂ? [sf.? 1)-85,2 ] +Ry o2

The perentheses on the g's refer to the number of derivatives, As N—oo,
thoruindcrnu+lnyapprotcho. In general, hovever, the sum over
Bernoulli mmbers le will yield an asymptotic series.

When O = x, Bq. (2.6) simplifies to
£(x) = (21x) f (20 +1) [emp(21f) ) - 1] exp(-12) .
=0
S8ince £(x) is assumed to be well-defined, Eq. (2.14) can be written as

®
£(x) = (21x)™ fim EO(ZQ +1) cxp[z:l.gk - (o + 1:)1] ’

®»->0

(2.20)

(2.11)

(2.22)

(2.13)

(2.14)

(2.15)
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where we have used -
m .
S4m Eo(aQ +1) exp [-(.w + 1:)2] =0 . (2.16)
N0
The latter equation follows from the completeness relation for Legendre poly-
nomiale. It may also be derived from Eq. (2.13), for K = 2/x° + i/x ,

whereas

0

Ym f al (20 + 1) exp [-(w + 4..:)&] =-2/x® -1/x . (2.17)

®—=0 %4
The limit on w, & positive quantity, is carried out after summtion. Equation
(2.15) now becomes

£(x) =X + 1’1(1) , (2.18)

£,00) = (207 im | al (20+ 1) exp[2t§ (D) - (0 + )] . (2.19)

@D-»0 “0

Clearly, the above result will be most useful when K is a small correction;
that is, wvhen the replacement of sum by integral is a good approximation. In
general, the phase of the summand in Eq. (2.15) changes rapidly with L, so
that £(x) will be the result of delicate cancellations between positive and
negative terms. For this situation, K will be large. However, if the phase
does not change appreciably over a large range of {'s, the algebraic sign of
the terms stays the same, and we get & large contribution to the sum. Hence,

K is expected to be emall vhen the phase is stationary for some £ :

2ab ()
v i o . : (2.20)

(o]
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Referring to Eqs. (2.9) and (2.10) for the WKB approximation to the phase
shifts, ve see that Eq. (2.20) is satisfied when L, = O. The implication
is that Bq. (2.19) can describe the backscatter of & classical particle
with zero angular momentum.

The above suggests that we replace §({) in Eq. (2.19) by an ex-
pansion of 6'(Q) in powers of ‘h « The class of systems for which this
makes sense can be determined by examining the potential-dependent term
in K. (2.7),

R 2 214
%J’ ar [(x - V) -t’—(&?)—] . (2.21)
rl(h) 2a r
An expension about h = O implies that the centrifugal potential term is

a correction to V. Then the turning point r. is approximately Ty vhere

1
E = V(ro) . (2.22)

This immediately rules out attractive potentials and repulsive potentials
for vhich E is always greater than V. The simplest remmining situation

is a repulsive potential and an incident energy for vhich there is a single
turning point; e.g. & monotonically decreasing potential. Equation (2.22)
will be valid for this case if only small L's are important, and if
kr°>> 1., Systems with multiple turning points will be ignored as these
involve non-classical barrier penetration.

The Taylor expansion of Eq. (2.7) in powers of h yields

') = (L+d) /2 + o - BROR+ 92 + 0 [B3(R+ DY), (2.23)
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where

s - Jln{ f [an(: v)]i - (zm)? R] ,

R-»m

j 1 r

(r- V)
I Eq. (2.23) Ls substituted for §(Q) 1in Bq. (2.19), and if a change of
variables, x° = h( £+ i)z, is made, the integral becomes

fi(x)z pL exp(2ia/h) Um dx x exp [-(m + 10)x? + O(t)] ,
w->0 /)8
P = h k .

The convergence factor has been modified for convenience. In the limit
b0, Eq. (2.26) simplifies to

£°(x) = (2p1b)™" exp(21a/h)

The corresponding cross section is obtained from Eqs. (2.3) and (2.28):

6°(x) = 25 “
(= up? r:r L/c? 2
o |a-(x -v) l!

We must now show that Eq. (2.29) follows from the classical croes

section, mnolys
L daL
° s = ——— — .
6- ( ) -E sin 0 &

For a repulsive potential and a single turning point Ty the relation
between O and L is

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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l/rz

x -0 -uE(Ld)r [an(l V) -Lz/?]? . (2.31)

The integral in Eq. (2.31) is greater than zero. Thus, when @ = x, L

must be zero. Expansion about L = O gives the relations

L (@) (x-0) , (2.32)
& o=@, (2.33)

where b is defined by Bq. (2.25). By substituting the last two equations
in Bq. (2.30), ve again obtain Bq. (2.29).

Equation (2.28) applies to the combination of a repulsive potential
and & single turning point, A validity condition relating wavelength and
potential strength is most easily obtained from Eq. (2.13), the difference
between sum and ingstral. Referring to Eq. (2.15), we find

g = () (204 1) a2t - o 1al] (2.34)
80 that the first-order correction in h (magnitude) is of the form

457 exp (210/h) . (2.35)

The ratio of the preceeding factor to Eq. (2.28) gives the following

/r
ar rTL_Fl r? -f A <<) , (2.%6)
J: k¢ - u(r) ° |kE - U(l/u)P

It is clear from a graph of the u-integrand that the above integral

restriction:

has & minimm value of (kro)'l for repulsive potentials which vanish at
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infinity. Thus, we are again led to the conclusion that kr o™ =] for the
validity of the classical result. The above integrel also occurs in the
classical cross section, Eq. (2.29). We obtain, therefore, the following
upper limit to Scl(’)‘

2
« 1 1 T
Gcl(') = %) = la.k—z zk—ro—)_-z- = 10;- . (2.37)

The form of Bq. (2.37) suggests division by ix of a geometrical total

cross section, xroz.

The integral in Eq. (2.29) can be done exactly for inverse power-

lav potentials, U(r) = qr™, n=0. Thus, by the substitution r = r t™,
wve have
1 .

I 'f dr i U(rﬂi n(kro) B(K) i’) ’ (2'$)
vhere B is the Beta t\mct:lon.9 In terms of Gemma functions, Eq. (2.29)
becomes 60( | [r\(l + *) 2.3)

X) = —T'—— .
T‘ & +1)

2

For the Coulomb potential, we have 5°(x) = -5 ro ) T, = al/k ;hile the

result for the inverse square lav is Q(z) - roz, ry = —k— .
backscatter cross section for the inverse uqmre law can be approximated
by the classical result vhen (az)*>>1. Fimally, as n— o in Bq. (2.39),

6 © approaches the upper limit of Eq. (2.37).
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III. THE INVERSE SQUARE-LAW POTENTIAL

In Section II, we could not write down explicit corrections to § °(x)
because, in general, the error in replacing 81 by 8.1 is not known.
However, the phase shifts are known exactly’ for the potentisl U = Xr'z,
and they are equal to the WKB pbhase shifts:

Sp- 8y =wz [ - [(Re0?¥]Ey . (3.2)

In addition, the integretion in Eq. (2.19) can be carried out exactly,
even if Bq. (2.11) is used to extend (approximately) the result to angles

o.
close to 180" : o (3.2)

£ gy fn [ abelen) @ (280 - @+ 10L] 3, [0 BF - 0]

o0
= - 2 * - .
1/x f:)oj; ax x exp (@ + 1x) (2% + (¥+ B }Jo[x(s 9], (.3
vhere the substitution x° = {({+ 1) is made in the last step. ‘Bquation

(3.3) integrates to'0

. 4 2 _ o2k
o -7 gt ce oWl e o) o
By multiplying Bq. (3.4) by its complex con.mmcndbvmpinc_onlvtho
term proportional to &, we obtain the classical cross section® for 0= x:
b1 -2 '
20| "o (& -9]? . (3.5)

The ratio U/kz 1s independent of k.

When O = x, we use Eqs. (2.18) and (3.4) to write the following exact
result:
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2c) = X - (o) aap [-1a(¥s 93] 2 + 1u0d+ 1] . (3.6)

Hovever, as ve nov show, the asymptotic expansion for K, Eq. (2.13), is
valid only vhen J > 1. To obtain K, we set

g = () (2 + 1) e (o + 1) [y + (L DR, (3.7)
and note that 531'1) = 0, becsuse of the convergence factor w. Then,

2q. (2.13) ylelds
e [t ¥+ D]~ - E (¥ 7 w0 (¥4 72
. 1 - x2/8 . 3)-5/2
| +1[m ggsim—g,ég’w [ 9%2]]. (3.8)

The first three terms of an asymptotic expansion for & (x) now follow from
- Ras. (2.3), (3.6) and (3-9):

Kl G=)~ ¥ +a+p¥ L +0(¥F) , (3.9)
vhere
z .
a-‘%--ﬁ--fwz-.os? , (3.10)
8= & oo (3.11)

Equation (3.9) can be interpreted as an expansion in povers of K%, A greph
of G(x) versus ¥ will approach & straight line for large ¥ , vith a as
1ts projected intercept.
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Iv. THE VECTOR PROBLEM

The preceeding formulation can be applied, in a suitable limit, to
the problem of electromagnetic backscatter from an inhomogeneous dielectric
e(r). With the assumption of sinusoidal time-dependence of the fields,
the pertinent Maxwell equations are

,,v_' (‘E)'o P

i<
fe

=0 ,

i<
fm fwe

-11:&,

iQ

-M °

N

It has been shown by Arpnlhu that g[ip derivable from two scalar functions,

E=Vx(R#n)+§ Vx(V x(¥D) ,
mﬁw; V¥ satisfy the following partial differential equations:
V2 +ife(r)V =0
ve ¢ +[k2e(r)-w(r)]¢-° )
V(r)-é(%)z-g]é :%g
chond:ltiouonW and § must be such that

— 3 1
B =3 X exp(ike) + A0, 8) T exp (1kr) .

Here, X 1s the initial polarisation and A is the vector scattering
amplitude. The absolute square of A determines the differential cross
section,

(4.1a)
(k.1v)
(4.1c)

(k.14)

(&.2)

(k.3)
(b.%)

(1.5)

(4.6)
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The radial equations associated with Eq. (4.3) and (k.4) are

2
# (rRy) + [kBe(r) - 9-‘3;‘5‘-31] (xR) =0 , (4.7)

2
T:f (xg) + [©e(r) - W(r) - 9-‘-3:‘1*—11] (rg) =0 , (4.8)

with boundary conditions

Ry,r 8 . ,, O (4.9)
Ry g oie O - La/2 +SL ) (4.10)
rSl Iti_; sin (kr - l}/z + \‘l) . (.11)

The phase shifts Sl and Y}, deteraine the scattering.

The scattering amplitude is derived by substituting expansions of
the form
E. o.u R r‘;\ (0, &) , (4.12)
for Y and ¢ in Bq. (4.2), and then by using Eqs. (k.lc) and (k.6). In
general, A is a complicated function of angles, but it simplifies for the
forwvard and backward directions:

bk A(0) =% §1 (20 + 1) [m(ZISL) -1 + exp(ang ) - 1] , (k.13)
o
Mk A(x) =% El(-;)1 20+ 1) [aw(@§)) - em(ang)] (b.28)

The latter equation may clearly be written in the form

2(x) = £, (x) - 24(x) - (210)" [exp(21h) - exp(ean)] . (4.25)

-1h -
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Here, fq,’ ¢ are back-scatter amplitudes for the scalar problems represented
by Bq. (4.3) and (4.4), with boundary conditions of the type Eq. (2.2). We
derive an approximate expression for A(x) by replacing r’,, ¢ by their relevant
WKB scattering amplitudes.

Equation (4.3) can be rewritten in Schrédinger form:

viy + [ -um)] o,
vhere
e(r) =1 - U(r)/x? .

The restrictions on U(r) are the same as those applied to the potentials of
Section II; namely, that U is positive-definite and slowly varying in a
vavelength, and that U = k% 1s satisfied uniquely at r = r_. With this
choice, e(ro) = 0, and ¢(r) = 1; e.g., & plasma. The WKB phase shifts for
8[ are then given by Bq. (2.7), and the scattering amplitude by Bq. (2.28).

In terms of k and ¢, we have

£0x) = — LN fpetot - ) .
2ik [ [o ar (—k%%f ]

Equation (4.17) requires for its validity that kr = 1.

The darivetion of the amalogous expression for r¢ is more subtle,
for it is not true that one merely replaces kzc in Bq. (&.17) vy kzc - W,
Instead, ve will show that

-15 -

(2.4)

(4.16)

(%.17)
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o g [ eyt ]

wpo 2
21k [ u#‘:—m]

kzc(po) - l%‘l.(oo) =0 .

L

An understanding of this modification is arrived at by examining the
nature of W(r). In particular, this "effective potential™ is singular at
r =r, for ¢ is zero there. An expansion of K. (4.5) avout r, Elves

werd (o),

vhich implies that W drops, in magnitude, froninﬁnitytooraai'kzintha
distance of & vavelength. It is convenient to partially rewrite W in terms
of U by use of Bq. (4.16):

W) = ¢ (@®)E[u(0)]? + Had) P o)

The primes denote derivatives of U. The function U(r) will change appreciably
from 1ts value at r_ in some charecteristic distance RO>E). At this relative
distance, ¢ 1s of order unity, and as an order of magnituds estimate of Eq.
(4.21) reveals, W<< U, Thus, Bq. (4.8) represents scattering by a long-
range potentisl U and a short-range potential W, the latter rising very
steeply near Ty vhere it presents an inpenetratable sphere. The form of W
for r< T, is immterial since the incident wave camnot penetreate this region.
The above remarks are most easily illustreted in the case U = Xr2, where

(4.18)

°(lt.19)

(k.20)

(k.21)
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W(r) = 31")2(:;-2 - roz)-a P -‘6* . (k.22)

The WKB formalism cannot be expected to hold in the region where W
is varying rapidly. The turning point o mist be enough wavelengths from
T such that W appears as a slovly varying perturbation to the incoming
scalar wvave, To show that this is possible, we evaluate the rnetiéml
change of W in & vavelength for the example of Eq. (4.22); that is,

[W1o)]  do s
m:?- - (pq fgéo)(po =) (h.23)

To determine p for this example, we write Bq. (4.19) in the form

(poz - r02)3 - ,‘k-z roz poz . (u.ah)
A tirst approximation is obtained by replacing Py OB the right-hand side

of Bq. (k.24) vy Ty
oo 7, [L+ 2/¥)M3] . (4.25)

This step is clearly Justified for \6 very large. The difference between
Po and A is

Ko, = 7p) = (Y6, (1.26)
so Bq. (4.23) boco-u
ﬂl
Y oC ()3 (%.27)

Thus, the left-land side of Eq. (k.27) can be made small. The factor to
mu@tormmmmw-munsmwummVu

-17 -
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an expansion parameter in the perturbation treatment of Eq. (4.18).

In order to derive the WKB phase shifts, we observe that the
singularity at r = O is responsible for the factor (L + #)% in Bq. (2.7),
as opposed to the familiar Q(0+1). This was first proved by Langer'>,
who introduced the following ayproximation to the wvave function:

@y () = [(B) (?,?]* CYECAREFYRAAL I
j&(r) "L:I ar! Ql(l") ’

QL(DL) =0 .,
The J's are Bessel functions. Equation (4.28) satisfies the differential
equation
%
Trf»f[ﬂf(r) - qk(r)] ®g =0

- - — Q 16
Qy(x) = -5/% % :;;;( y) +5/ A—Qf

This approximation is valid when the WKB approximation is valid ( qf< Qz) R
and, because %pl) is finite, it may be used throughout an interval con-
taining the tuwrning point.

Ve tentatively take the folloving form for Q, :
Ql? = Be(r) - cW(r) - (L+ D22,

vhere ¢ is a constant. For discussion purposes, Eq. (4.8) can be thought
of as representing electron scattering by potentials U and . Then, the

«18 -

(k.28)

(k.29)

(k.30)

(k.31)

(k.32)

(k.33)
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wvave mumber k is proportiomal to h'l, W 1s independent of h, and q is

independent of h to first order. Thus, in the limit h—> o, the first
term on the right-hand side of Eq. (%.33) will be dominant except near
r,» Vhere it goes to sero while W becomes infinite. Bquation (4.33)
clearly takes the following form near r =T,

A BN GRS TN R (4.34)
o
vhere c,, c, are constants vhich depend on c. By substituting Eq. (4.34)

into Bq. (k.32), and by noting that

3 1V e -5 (k.35)
ve find
NOF=YEE SRS RS F TR A (4.36)

Thus, the differential equation for mL has the following form near Tyt
-(cy =8 ey (o - 1)
" - o= = . ho
@y’ +{ - ro)z ol ro) ml 0 (%.37)

Also, Eq. (4.8) takes the form

dz(rs ) |
Y/ " S =0 , k.
e (- - 7)° 4<r-ro>] o) - -
a=u(r) [ve)]? . (4.39)
A comparison of Bgs. (4.37) and (k.38) ylelds the results,
{"1 =1 (4.40)
c, = 1/3 a .

19 -
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These values are consistent with the choice ¢ = 4/3 in Bq. (4.33). Thus,
Eq. (4.29) vecomes

3,6 - f P DI R L L (b.12)
(4]

If the asymptotic forms of the Bessel functions for 3 { large and real are
substituted into Bq. (4.28), the asymptotic form of o) is obtained:

o (r) 5 stn (e - /2 40} ) (b.2)
cha [S,(R) -xR+ (Lo d) w/2] . (b.43)
- = L3y

As & check, we note that the required solution to Bq. (L4.38) approaches

zero at ro as

r-)¥2 . (1)

L r-yr

Tor r <p and | 1‘ largs, Bq. (4.28) takes the form' -

9 T2, PP ea(- |3 . (4.45)

From BEgs. (4.35) and (4.40), we bave

w( - |§) ;57 @@ [0alr - )] -z (1.46)

The factor (Q )'* contributes (r - r )* c‘approtchu r, from the
right as (r-r.')3/2 in agresment with Bq. (k.h4).

e l-dependence of the \q 1s the same as in Bq. (2.7). Hence,

the approximate scatteripg amplitude r‘°, obtained by substituting Eq. (k&.43)
into Eq. (2.19), mist have the same form as (4.17), but with k°¢ replaced by
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x2¢ - %w. This is just Eq. (4.18). From the standpoint of quantum

mechanics, k is proportional to B}, and W 1s independent of §. Thus,
it might be argued that the term %w must be dropped for consistency.
This argument is erroneous, again because W is singular at oo In
Section V, it is shown that the amplitudes £,° and t¢° have equal

magnitudes, but differing phases in the limit h—0.

Finally, we investigate the error in replacing the sum over { by
an integral. The difference between the exact amplitudes is given by
Bq. (b.15), so the first-order correction as dstermined by Bq. (2.12) and
(2.13) 1s

(u1k) ™ [ap(2td) - ep(atn)] . (.47)

But Bq. (4.47) bas the same form as the second term in EBq. (4.15). Im
semi-classical terms, lq; (4.47) 1s of order  and must be dropped.
Therefore, the WKB approximation £or A(x) takes the form

2A°(x) = fy(x) - £°(x) . (4.48)
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v. AFFROXINATE EVALUATION OF INTEGRALS

The integrations in Bq. (4.18) can be carried out approximately
in the extreme geometrical-cptics limit. We first consider the phase

factor
A=2 lin [fdr(kze-l-;-ﬂ)i-m] (5.1)
R—> 00 p%
=2 lm [l ot -] 21, (5.2)
R—»>00 o
where
I-- f * ol + fb et [0-wsdtoa) . (5.3)
%o Ro ' ke

The first term in Eq. (5.2) 1s common to both tw° and f¢°, and, hence,
can be ignored wvhen deriving cross sections. If the second term of

Eq. (5.3) is integrated by parts, the boundary term is zero at the upper
limit and is the negative of the first term at the lower limit, by Eq. (k.19).
Therefore, we are left with

r
I- lj g (@ -3 é’:)*]fro wott (5.4)

It will be shown that the main contributions to I come from values
of r near Poe To emphasize this feature, we change variables to

¥ = 43000 - (53T ()2 A2(r) (5.5)

AG) = [1 + 2/3 %oy )2, (5.6)
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vhere the second equality of Eq. (5.5) follows from Bq. (4.21). The
derivative of y is

.. 3 PSP @) a) ) (5.7)
ar

3(r) =2+ 2/3 () (@)% a0 & [0 am)] . (5.8)

The minus sign in EqQ. (5.7) arises from the convention that y be positive
for monotonically decreasing U(r). From the definition of yz, ve see that
T =T, Py © correspond to y = 00, 1, O, respectively. In texrms of y,
Bq. (5.4) can be written as

I=-2/3 f & yQ1 - 72)'* fb,dv'(r')'z 2(y') , (5.9)

y

2(y) = Q—{%’;\}JX : (5.20)

The inverse transformation, r as a function of y, is obtained, in
part, by a Taylor expansion of Bq. (5.5) about r = T

vhere

yz - [-u'(ro)] -1 (r - ro)'3 [1 - %'a(r - ro) 4 eone ] ’ (5.11)
vhere a is given by Bq. (k.39). As a first approximation, ve set r =T,
inside the bruckets:

rer < [- U'(ro) yz]'1/3 . (5.12)

An improved result can now be obtained by successive approximations, the
first of vhich leads to

Pa [-ve)]t -3 (13 A (5.13)

-23 -
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vwhere \

AZ = u"(ro)[u'(ro)]"‘/ 3 (5.14)
Thus, if y>> ?\3, Eq. (5.12) is & good approximation to the inverse
transformation.

The quantity [\ 1s our perturbation parameter. When )\<<l, the
integrel of Eq. (5.9) can be evaluated spproximately. The magnitude of [\ 1is
easily estimated in the case of inverse power laws, for U'(ro) is of order
U(r,)/r, = ¥¥/r,, vhile U"(r,) bas magnitude k%/r 2. Thms, N hes magnitude
(n-o)'l/ 3, In general, the condition is (XR)™Y/3==1, vhere R is the range
over which U changes appreciably. We have seen in Section IV that this
restriction insures the slow variation of the effective potential W near the
turning point. Hence, the size of |\ determines the applicability of the
WKB formulation.

Since |\ is small, Eq. (5.12) holds very well for y= [\ . This
value of y corresponds to the following value of r:

(ry -x,)
_’_1.50_’32 [-AZ: 3w )]s . (5.15)

An estimate of the magnitude of the right-hand side of Eq. (5.15) yields
(ll:::-o)',‘/9 <<1. Thus, vhen r <r<r;, & function of r can be expanded
about T, and then converted, in first order, to a function of y by

Eq. (5.12). Application of this procedure to Eq. (5.10) yields

t)= 1+ falr -r )= 1 -5 N y23, y=p . (5.26)
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We now rewrite Eq. (5.9) as the sum of two integrals, the first of

vhich is
®

I]--ZS &yl -y i Q"-af')

8ince y'> p\ , we can use the relation of Bq. (5.16):
(oo}
* -2/3 f; &y - At l a2 [1 -} A2y 23],
=-x/3+2/3 N +0(A%)

The second integral,

| A

--2/3 &y (1-:2)'* & ()2 2(y)
oo [ [ ot

can be carried out by ignoring the variation of (1 - y3) ¥ vith y, mis
introduces an error in the final result of O( A3). The simplified integral
can be integrated by parts:
- Y =A
I, = - 1/3 ¥ fdv' (y')2 2(y)

y=0

- 1/3 ﬁwr(y) .

: (o]
The boundary term is - 1/3 \ at the upper limit, by Eq. (5.16), and it

1s serc at the lower limit provided W(r) goes to zero st infinity faster

than r'l'. The remaining integral is trivial when transformed back to the

r - variable, so
I, = - 1/3\ - 1/3 f & (3/2) (CPS/AHT (u)? aB(r)
1l
=-1/3h -1/3 [~ vt [ B ] .

- 25 -

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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If the second term of Eq. (5.23) is expanded about r,» We obtain, with the
help of Eq. (5.15),

I, = - 2/3 A+ oN/3) (5.24)
The sum of Eqs. (5.19) and (5.2k) yields
I=-x/3+008) . (5.25)

The remaining integral in Eq. (4.18) can be evaluated in a similar way,
the derivation being left to an appendix. The result is

[o0]
J-Edrai:’i&zg-w—)?-“;odr(—i%] [2+0)] . (A.12)

Thus, Bq. (4.18) becomes
(21k) J f¢°(l) - w(i/\) ’ (5.26)
with /\ and J given by Egs. (5.2), (5.25) and (A.12). If Egs. (4.17) and

(5.26) are substituted into Eq. (4.48), the following approximation is
obtained in the limit of very smll \ :

lf(,)\ .wﬂj . (5.27)

The cross section is the square of Eq. (5.27):

°@ = ¢ G, . (5.28)
The quantity 6,,( is the absolute square of Eq. (4.17); that is, it 1s the
cross section associated vith a scalar wave equation of the form Eq. (4.3
vith boundary conditions given by Eq. (2.2).
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APPENDIX
The integral,
00
2
l/r
-
po (kc-gﬂ) ’

can be written as

. 1/rC P | r2 ® 1/r? } LR 3
J E ar —Lf(kz¢) £ ar —L?(kze) +fpo ar —-4—;(k 5 [ - /3 kze) 1).

Ve designate the three integrals as JJ.’ Jz, J':3

integral in Eq. (A.2) can be evaluated, to first order, by expanding r

» respectively. The second

about roz

e ()2 [-ve,)]? f ®ar(r -z )}
r
o

22(r) [0(r)] 7 (o, - )t
By remembering that r = p  corresponds to y = 1, ve can use Eq. (5.12) to
simplify Bq. (A.b4),
3= 2(r, )2 [u'(ro)]°z/3 =28 .
To evaluate J, Ve split up the renge of integration into two parts,

Po=r=r andr,=r=co , vith r; defined by Eq. (5.15). An order of
nagnitude estimate for the latter range gives

2)« 2
J'3( )= [o(]\ )] hyo.
The remaining segment of J3 may be transformed to the y-variable defined
by 2q. (5.5):

J3(1-) - 2/34l & 73 a() [@ - At

-28 -

(A.1)

(A.2)

(A.3)

(A.b)

(A.5)

(A.6)

(A.7)
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vhere

6(y) = (111372 M3y 3y
Equations (5.6) and (5.8) define A and B respectively. Since y= )\ , we
can expand the right-hand side of Eq. (A.8) about r = r,, and then use
Bq. (5.12). To first order, g(y) is just the constant g of Eq. (A.5).

Further, in first approximation, the lower limit in Bg. (A.7) can now
be set equal to zero, with the result

AP YY" f yy'Bla-Ht-a] .
o]
The order of magnitude of g can be estimated from Eq. (A.5), in the
aanner of Section IV:
g =ofi)Y3]-0r(pY

In Section II, a minimm was established for J.

13 that is,

5 =0x,)? = o(p3)

We assume that the actual value of J, has the same order of magnitude as its
minimm. Then, EqQ. (A.6) can be neglected relative to Eqs. (A.5) and (A.9),

and Eq. (A.2) becomes
1 2
J -[ Irodr ' :) ] [1 + O(A)] .

(A.8)

(A.9)

(A.20)

(a.11)

(A.12)



1.

2.

9.

10.

11.

6110-T837-RU-000

FOOTNOTES

D. 8. Saxon, Lectures on the Scattering of Light, Scientific Report
No. 9, Dept. of Meteorology, UCLA, 1955.

L. I. Schiff, Phys. Rev. 104, 1481 (1956).

P. J. Wyatt, Phys. Rev. 127, 1837 (1962).

D. Arnush, Space Technology Laboratory Report No. 6110-Tu66-RU-001
(unpublished).

K. Ford and J. A. Wheeler, Ann. Phys. T, 259 (1959).

H. Goldstein, Classical Mechanics (Addison-Wesley Publishing Co.,
Clnbridgﬁ, h's., 1950)’ po 82’ 91'920

N. F. Mott and H, S. Massey, Theory of Atomic Collisions (Oxford
University Press, London, 1949), 2nd ed., p. 120.

K. Knopp, Theory and Application of Infinite Series (Hafner Publishing
Co., New York, 1928), English ed., p. 520.

P. M. Morse and H. Feshback, Methods of Theoretical Physics (McGrav-
Hil1l Book Co., New York, 1953), Vol. I, p. he5.

A. Erdelyi, ed., Tables of Integral Transforms (McGraw-Hill Book Co.,
New York, 1954), Vol. II., p. 9.

R. E. Langer, Phys. Rev. 51, 669 (1937).



GELOSSVINN

TETT 99730~ TeoT 300000 emarixze *ITNIT oTHi0-TWOTE0N SIS oMY

woTwTxoadde JUTeoe o) g’-’cu” wopsempuoaide JeTeos ou3 JO saegrwnb-sexys
PUBQ3 ST SLIISSTETD ' WOIJ I33e08AIEY OTIsudem O3 PURQ3 ST JTXIMTIP ¥ WOIF INIWETIN ST
* b . ~OIJ0TY °WOTIONS SE0IO TEOTHEUTS oy Iswf o3
OI30TT ‘UOTINNE S0 TWOFeswT> gy jenl 83 2 pangs S s i
ISl s pue ‘soyawoen wmmwnd JO RIoAERLS WY iuﬂ.— Q«ii‘i. it

U} POSSNOSTD 9T WTQOS JeTwOs Gl  “OIes enbpEn -"!‘ i«o L Sand 9‘-’
ﬁ.l-l i».looa%olﬂ sTwpImegod .“.ll qome axe sTRIENOd sesg  “sTerameod satsTeiex
o«hd'uﬂdubﬂdoguo;u !”g ‘orryeamis LYTeorsengds JO SPWTO ¢ £q SGASA 303004
DED IwTE08 JO MUTINIIW08 OQT SE3 J03 SWOTIONS PES J9TW08 3O INTINIWE LOQT 43 JOF SWOTIe
#9010 ANWNITEO 03 pasn ewrpzoaiife qUn ¥V 29017 MUTRITYO 03 pesm o1 WotiIwEpeoaile O Vv
(r-(ves <3 NVEL (= (w690 omnomsw-.ullv
(000-n- LEGL-0TTY 2061 Jeqmeacy .. .. {000-n-LEQL-OTTY) "€ OF °296T Sequmacy
qoulT °f °d £q ‘VIOIN SNOMCEDOMONINI MOWE WELIVOSOVE ghhk.ﬁiﬁ'ﬁﬂ!‘o‘g}

"YPLIOSTTIN) ‘qoweq opmopey .
‘areg sowlig sup ‘Ul ‘9e31303w30qW] ABoTOROeS sowdg _ QEIASSYIMN Riai sowig smp ‘°amy ‘sera0jesoqw] LSorouponl soullp
_ cELATISYEEN

AT 99TAE0-TWOT 000 SEBIED SITHTT SOPWO-TROTIIIND SERINNS o3
wopjeRpxoide Jwrecs g3 g’lu.uu woTIeEXOMife JUTVOS oNY JO SINQIWD-e0Igs 80
0} PEROZ ST OTAOSTITY ¥ WOLS IN3WoeRowq STsulen O3 PUMOJ ST OLMOSTOTP ¥ WOLS Igssesown IJTieelen
. ~QIJeTY °WOTI00S SE0ID TVOTONVIS omy Jouf of
~0JJ00TY °UOTIO08 SS0ID TWOTSHTD oy Jouf 9% * o pee ¢ s Pl

JIMMeex o) PUR ‘soTuwoem wntend JO RIOASENES ) nn«!- Quill‘vi
UY pessnosTp 97 WITROM JwTwoe ol “oxex ssbpEm c-l..g !iuo aweos i"!
nﬂlc-l. n—(guos iglﬂ«i qone axv sTeronod seeyg “sTeTIussod saterwiex
.E@-"M.guo; 3»”.-33» ‘orryeamds ATrwotenis 3o eSwId ® Aq SSASA I0308A
PUT IUTEOS JO DULINIW08 OQPT Y JOF SUOTIDeS !i%g&a“—“w’%
9015 UTNITED 03 pesn §T VoTIwpxoadde M V 89015 HEINOTEO O3 Pasn §T WOTY ony
axodey PeTITeseIOM (= (%69, u«omm swwlﬂloov Jtodey petIyeeeTOM (t=(v69)%0 o uw-gv
otty) * “206T sequaacy (000-fa-L£ L-OTTY, 2961 Jeqmeacy
qoul o@hﬁﬂ%lﬁw&g qouly °f °2 Aq aﬂir!hg
“SFAIOFTTR ‘Qoweg opucpey ‘OIRISTTIN) ‘voueg opucpey

XTeg 2owdg sup ‘-ouy ‘setI0rmroqw] LSoroumcey adwdg QETIISSVIONN % sowdg smp ‘°owy ‘seysosmsoqu] LSoroumpel sowlg



ATNOSI 3 PUN ‘sOTURIIeR EMUWnD JO XIOAENGS W)
WY PeeSNOSTP 8T WTqOoXd JeTwds syl -oIes awbium

SORIOITITR) ‘Yoweg opuopey

3
up corywmpxoxdde JeTeos U3 JO sImIwnd-senmpy 8q

2TNSAI #q3 PUV ‘sOTUNIOE WMTWND JO JIOASNNES SN

*3TIT SoT¥io-TeoTmoel suBIe WY
uy wopswmpnoaide 2eTeos sy JO sasgswnd-semy o8Q
03 PUROZ §F JTIJOOTOTP © WOLZ INPJOEROW

|

TS oy Pue ‘soTEuoem Wnyewd Jo RIOASENRS oW
at pesendeTy 8T werqosd Juywos oyl °‘Ooes ewdbpen

E)
ut woryeuymosfde Jeress oy 3O saadawd-eamp oq

ATNoeI ous PUS ‘soTEuncen waswd Jo XIoasmNgs oWy
uy pesenosTy st warqoal Jwyeos exg olex evbyIwm

"TRIOITIN) ‘yoveg opmopey
.ii!..!.ﬂggii



4TNOAI s PER ‘soTewgoem mEwnd JO RIOAMENES o)
a3 peesnosTp s WTqoM JuTeos gl °‘oxes swbyun

Ieex o} pue ‘soTuegoeE EnEerd JO NIOAENIS oYY
uy peesndeTp o1 werqoxd Jwiwos syl oz swbTum

uy wopyunymoside Jerece syy o savgtwmb-seamy 8q

ATONI o3 DU ‘coTERDER WD JO RI0ASENES O3

® SUY TOTIORIZAX JO 1PET BTYuOdselIco SN U
qons are STVFINNYOd eooyl °sTRFIENNOd sapsTRdes
fo1xsemmils LAyyeotsends JO sewyd © Lg seama J0R00A
PUS IUTE0S JO BUTINGINOS 0T O¥3 J0J SUOTIOes
99015 S3¥TNOTYO 03 peen s SoTIwproslde OB V
3sodiey POTITesVTOM (T=(%69 “off Jourymng)
05t ~29-WRi-a

(ooo-me~-LEgL-0TT9) 4 *296T IouERACH

qoul'] *d La ‘vICEN SNOMESONONNI MOUd WEEDOSIOVE
SUPRIOITIN ‘Woveg cpuaped

we oouig swp ‘-uI ‘sepaosuioqe] Sorowoes souly

)
uy worjenprosfife Jurwos sy o sIegIwRb-eamyy oq

ATU0X o) DU ‘SOTRUNOUE WyEWD 30 RIoaemegs oN)



CEILSYINN
“ATFT TEOTE00S SmNIYNe TRYT eoTH0-TeoTIom0ed smmIyNe o3
S«oluﬂllu”-“ora .Baulv.’luoun uvorsayxosdde JUTE0s o) JO SI8qTwnb-eeuNy
0} PINOF ST JTIAOOTSTD ¥ WHIZ INMIWOETN ITINEBem 03 EMO3 $3 OTMONTITP ¢ WOIZ IMWeRON SFIsave
. ~0X3J0TY °UOTIONE $90XD TWOTISVT> ouy I o}
-Ox3207T8 %gga’ia a "ln e fhdd
? R » i oy peesncetd 91 weTqoad Jetwos Nk  coaes swbpum
Uy peesnOSTy 87 WTqoad JeTe0s gl ‘oxes smbrum . voy s g
* S WOT3ORIZAZ JO Xepul JuTpuodsaiiod Wy IRy ’"«u% gy Suryuodesiaco v
ﬁgu sswt !"883 ‘otrsemmls ATTorasnds JO SUTY ¥ £q SSABA J0300A
Puw IeTwOs Jo BITIMINS OFT M3 I0J SUOTIN PUS AWTWOS O DIIINIWOS LOQT U3 J0F SUOTIES
#9015 23TNOTES 03 pesn 9] UoTWEEROide M ¥ 890X 239NOTE0 03 posn o UoTIwpxoadde M ¥
asodey perITeswIOW) %69, homn 39ur3m00) asodey persyesvromn  (T-(w69)v0 oﬂ-nw.gv
{ 000~mi= LEQL~OTTY; uwoww.! . ASw._l.Ro_..oqg € 0f *296T seqEmaacy
qoul] “d &2 “VEZIN SOOBREXHOI WOUS WELDROSIVE qoul1 “f °d £q VITEN SOONENSONONI MOUA EELIVOEXOVE
Ated sowdg sup ‘°u] ‘sepI03wI0q] ABoToUROel sowdg _ QALATOSVINN Weg soudg swp ‘-] ‘seraoymsoqe] ABorowoey sowly

*ITNIT $9TMO-TWLIISN00D SEAIINS U3 *ITHIT SOTHEO-TWOLIsE0sl SERIINS oqy
woTIWETXoaEdS IWTWOS ST JO SINIWD-e0ap) 8q I g“!"—do‘saii"

03 PUNO3 ST JTIDETIIP ¥ WOIJ I933WSXNq ITIeubem mag ST ILIOeTeR ’Gi’iﬁ

OI309TH °WOTIS6E SS0XD TROTSEwTd oy sl oF a g‘ﬂc’.'. TA008 80D i‘ i’

TNSaI 9q3 PUe ‘soTewgosn EMUWd JO JIOASEEIS N3 iﬂu 3!-]' !la i“
POSVOSTP #1 WTqOoM JeTwos syl -ores ssbpm l."!.uv "Dl\o XUVE08 o!o’

» SW VOTIIUIJEZ JO XepUT STIPUOISerLIod sy IWgy 9”3 !iﬁo’ WS

evemmt ) - ‘orasemmle ArTeotasyls 3O SEUTD ® AR SGAWA J0ROGA

el Lyreottenls SEUTD © L4 seAwA 303084 ey o flaagans

E-Buooa-d_uo?ooaqouoaooﬁﬂ-“hu‘iq SOIO 23UTHOTEO 03 posn 9T WoTIeRpwoaife OM ¥

asodey persyeserom  (T-(%69)%0 homw. 39urIN00) a3odey PeTITeevIOW Y90 &v "o .w..l.ls

8@.8159..3.6 “d of .uﬂww.i . Mn@.i.pn ~OT1Y, own Ssgmnacy

AT °f °d £q TVICIM SOORCIMONI MOUL SELDRGENT £ WPRIFTTY ‘woueg opecpey

.ila hi ; .
‘xxeg sowdg sup ‘-oul ‘sepsoreroqw] ABoTowpel sowlg CELITSSVIOMN ‘wtng soudg sup ‘WY ‘eetsoswsoqe] ASorowoey sowlg



